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Transcritical rotating flow over topography
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The flow of a one-and-a-half layer fluid over a three-dimensional obstacle of non-
dimensional height M , relative to the lower layer depth, is investigated in the presence
of rotation, the magnitude of which is measured by a non-dimensional parameter B

(inverse Burger number). The transcritical regime in which the Froude number F ,
the ratio of the flow speed to the interfacial gravity wave speed, is close to unity is
considered in the shallow-water (small-aspect-ratio) limit. For weakly rotating flow
over a small isolated obstacle (M → 0) a similarity theory is developed in which the
behaviour is shown to depend on the parameters Γ = (F −1)M−2/3 and ν = B1/2M−1/3.
The flow pattern in this regime is determined by a nonlinear equation in which Γ

and ν appear explicitly, termed here the ‘rotating transcritical small-disturbance
equation’ (rTSD equation, following the analogy with compressible gasdynamics).
The rTSD equation is forced by ‘equivalent aerofoil’ boundary conditions specific
to each obstacle. Several qualitatively new flow behaviours are exhibited, and the
parameter reduction afforded by the theory allows a (Γ, ν) regime diagram describing
these behaviours to be constructed numerically. One important result is that, in a
supercritical oncoming flow in the presence of sufficient rotation (ν � 2), hydraulic
jumps can appear downstream of the obstacle even in the absence of an upstream
jump. Rotation is found to have the general effect of increasing the amplitude of any
existing downstream hydraulic jumps and reducing the lateral extent and amplitude of
upstream jumps. Numerical results are compared with results from a shock-capturing
shallow-water model, and the (Γ, ν) regime diagram is found to give good qualitative
and quantitative predictions of flow patterns at finite obstacle height (at least for
M � 0.4). Results are compared and contrasted with those for a two-dimensional
obstacle or ridge, for which rotation also causes hydraulic jumps to form downstream
of the obstacle and acts to attenuate upstream jumps.

1. Introduction
A transcritical flow over topography can be loosely defined to occur when the

topographic forcing acts to (near)-resonantly excite a significant free wave mode
of the flow. In single layer flow, or equivalently the one-and-a-half layer flow to
be examined in this work, transcritical flow occurs when the Froude number, or
ratio of the upstream flow speed to the appropriate long-gravity-wave speed, is near
unity. The result of the resonant excitation is the generation of nonlinear waves,
whether in the form of hydraulic jumps, if the system is regularized by dissipation
as in the standard shallow-water treatment, or in the form of nonlinear dispersive
waves and solitons in flows where dispersive effects dominate (e.g. Baines 1995, and
references. therein). An essentially analogous phenomenon is known to occur in
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stratified shear flow when the flow speed is comparable with the phase speed of a
significant vertically trapped free mode of the system (Grimshaw & Smyth 1986).
Developing understanding of the transcritical flow regime is of particular importance,
as it is the regime in which maximum drag is exerted on the flow by the obstacle, and
the treatment of vertically trapped (or horizontally propagating) waves in atmospheric
gravity-wave-drag parameterisation schemes is known to be relatively simplistic, as
discussed by Lott & Miller (1997). Scale analysis reveals that transcritical flow is likely
to be ubiquitious in the ocean and atmosphere (e.g. Rottman & Einaudi 1993), and
characteristic transcritical flow patterns have been distinguished in cloud photographs
(Stevenson 1980; Burk & Haack 1999), and by synthetic aperture radar (Li et al.
2004).

An established model for the study of transcritical effects is that of single-layer
shallow-water flow. For non-rotating flow over a two-dimensional obstacle, analysis of
the nonlinear shallow-water model has a long history (e.g. Long 1954, 1970; Houghton
& Kasahara 1968), and great utility derives from the relatively simple picture of
hydraulic control that emerges. Regime diagrams can be constructed as a function
of Froude number and obstacle height illustrating the possible flow configurations
(e.g. Baines 1995), an approach that will be followed below. For the case of non-
rotating flow over three-dimensional, isolated obstacles, a series of numerical studies
(e.g. Schär & Smith 1993a, b; Jiang & Smith 2000) have allowed the construction
of similar regime diagrams classifying the resulting flow patterns and behaviours.
The well-known analogy with compressible gas dynamics is particularly helpful for
this problem, and Jiang & Smith (2000) identify ‘bow shocks’ and ‘V-waves’ which
also appear in the flow of a compressible gas over an aerofoil. This analogy has
been made explicit in Esler, Rump & Johnson (2007, referred to as ERJ07 hereafter),
where transcritical shallow-water flow over a small isolated obstacle is shown to be
isomorphic with the flow of a compressible gas around a thin ‘equivalent’ aerofoil, in
the transonic small-disturbance limit (e.g. Chapman 2000). The ‘equivalent aerofoil’
method of ERJ07 leads to a parameter reduction; for a given obstacle, the resulting
flow depends only on a ‘transcritical similarity parameter’, a measure of the criticality
of the flow relative to the topographic forcing. A similar approach will be followed
below.

On the geophysical ‘mesoscale’ associated with atmospheric flow around isolated
islands or over mountain ranges, rotation becomes important in determining flow
patterns and drag. In the transcritical regime, rotation becomes important when the
Rossby radius of deformation becomes comparable with the transverse scale of the
obstacle wake, which may be much larger than the horizontal scale of the obstacle
itself. This indicates a strong sensitivity of transcritical flows to even ‘weak’ rotation.
One aspect is that the waves generated by topographic forcing in the presence of
rotation will be distinct from those in non-rotating flow; in one-dimensional shallow-
water these will be nonlinear inertia–gravity waves (e.g. Shrira 1986; Grimshaw et al.
1998; Zeitlin, Medvedev & Plougonven 2003), which are known to be modified by
dispersion (Ostrovsky 1978). The generation of these inertia-gravity waves in the
relatively simple context of flow over a two-dimensional obstacle in the presence
of rotation has been studied previously (Baines & Leonard 1989; Esler, Rump &
Johnson 2005). Some basic qualitative effects of rotation in the transcritical regime
are apparent from these studies: upstream-propagating hydraulic jumps are arrested
a finite distance ahead of the obstacle, the amplitude of these jumps decreases, and
a hydraulic jump appears downstream of the obstacle when the amplitude of the
wavetrain of inertia–gravity waves excited downstream exceeds a limiting value. In
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Figure 1. Observed experimental interface elevations for an oblong obstacle towed at
speed U =10 cm s−1 through the shallow layer of a two-layer fluid (H1 = 6 cm, H2 = 54 cm).
(a) Non-rotating experiment, (b) rotating experiment. The Froude number for both experiments
(ratio of towing speed to interfacial gravity wave speed) is estimated to be in the range
F = 1.1−1.3, and the non-dimensional mountain height is M = 0.5. For the rotating experiment
the period is T = 120 s, corresponding to an inverse Burger number B ≈ 0.5. In each panel the
centre of the obstacle is marked by the ‘+’ at the origin. Solid contours show regions where the
interface rises (crests, marked C) and dashed contours depressed regions (troughs, marked T).
Adapted from Johnson et al. (2006, see their figure 5).

Esler et al. (2005, referred to as ERJ05 hereafter), analytic solutions for the special
case of a parabolic ridge are developed. New aspects of these solutions are discussed
below. Rotating layerwise flow over three-dimensional obstacles has, however, received
less attention overall and is the main topic of this work. Vilenski & Johnson (2004)
examined rotating flow over a Gaussian obstacle that is asymptotically elongated
in the cross-stream direction, identifying several representative flow patterns in the
(dispersive) rotating Kadomtsev–Petviashvili equation (Kadomtsev & Petviashvili
1970). The problem of transcritical rotating flow over isolated three-dimensional
(e.g. axisymmetric) obstacles has not yet been addressed, however – in particular the
question of determining the explicit relationship between different steady flow regimes
and the physical parameters describing the problem.

The influence of rotation on transcritical flows can also be investigated
experimentally. Figure 1 shows the interface displacement recorded during towing
tank experiments (Johnson et al. 2006) performed at the LEGI-Coriolis rotating
tank facility in Grenoble. In the experiments, a surface-mounted obstacle is towed
across the tank, exciting internal waves at the interface between two layers of fluid
of contrasting density. Figure 1(a) shows the interface elevations for an oblong
obstacle towed at 10 cm s−1 in the absence of rotation. Figure 1(b) shows a similar
experiment, but with the tank rotating with period 120 s, giving a Rossby radius
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of about 1 m. The experimental values of the non-dimensional parameters Froude
number, obstacle height and rotation, defined in § 2.1, are approximately F = 1.1−1.3,
M = 0.5 and B = 0.5 (in the rotating case), where the Froude number estimate is
partly informed by comparing flow patterns in a number of experiments at different
towing speeds with the flow patterns in the model calculations of Johnson et al.
(2006). Appreciable differences are apparent between the non-rotating and rotating
flows. In the absence of rotation (figure 1a), a steady bow-wave several metres in
lateral extent is generated ahead of the obstacle (labelled C1), followed by a smaller
bow wave (C1b) and a trough (T1) to the rear. The basic bow-wave structure is
well-captured in non-dispersive (shallow water) numerical simulations (e.g. Jiang &
Smith 2000), and representative model equations that include dispersive effects can
predict further qualitative details of the flow pattern (e.g. Johnson & Vilenski 2004;
Johnson et al. 2006). In rotating flow (figure 1b) the bow wave (C1) is significantly
decreased in lateral extent, and the secondary wave (C1b) is absent. Behind this a
broad trough (T1) is still present, but immediately behind the trough, downstream of
the obstacle, a large-amplitude, narrow, nonlinear wave (C2) appears. The appearance
of this wave can be attributed to the rotation, and a central purpose of this work
is to demonstrate that amplification of nonlinear downstream disturbances such as
C2, and the decrease in amplitude and cross-stream extent of the bow wave (C1)
are characteristic features of rotating transcritical flow. Shallow water flows over
both two- and three-dimensional obstacles are described in order to demonstrate the
robustness of this effect.

Section 2 presents a theoretical treatment of transcritical rotating shallow water flow
over both two-dimensional obstacles, re-examining the results of ERJ05, and three-
dimensional obstacles, extending and developing the ‘equivalent aerofoil’ analysis
of ERJ07 to include rotation. It is shown that in both cases, for relatively small
obstacle height, flows are well-characterized in terms of ‘similarity parameters’ that
measure the importance of criticality and rotation relative to the topographic forcing.
A regime diagram is constructed for the two-dimensional results in terms of these
parameters, and a nonlinear equation, the ‘rotating transcritical small-disturbance
(rTSD) equation’, is derived to describe the three-dimensional flows. In § 3 numerical
solutions of the rTSD equation are used to construct a regime diagram describing
the different flow behaviours for the three-dimensional obstacle case. The effect of
rotation on the drag exerted by the obstacle on the flow is discussed. In § 4 numerical
solutions of the rotating shallow-water solutions are used to evaluate the accuracy of
the rTSD asymptotic theory, and to verify the persistence of the rTSD flow regimes,
at finite obstacle height. Section 5 gives some conclusions.

2. Similarity theories for transcritical rotating flows
2.1. Physical scenario and model equations

From a geophysical perspective, the relevant physical scenario to be modelled is
that of a one-and-a-half layer inviscid fluid, consisting of a layer of undisturbed
depth H and uniform density ρ2 underlying a less dense layer (density ρ1) of infinite
vertical extent. For ease of exposition the density difference is taken to be small, hence
(ρ2 − ρ1)/ρ2 � 1 and the Boussinesq approximation can be made. The fluid, acted on
by gravity g, rotates at angular frequency f/2 and both layers flow with an initially
uniform horizontal speed U over an obstacle with maximum height hm and horizontal
scale L. Further, the aspect ratio of the flow is taken to be small (H/L � 1) so that
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shallow-water dynamics applies in the lower dynamically active layer, and to leading
order the flow remains uniform in the upper layer for all time.

It is straightforward to show that the non-dimensional rotating shallow water
equations hold for the lower layer flow, i.e.

ut + (u − F )ux + vuy −
√

Bv = −σx − Mhx,

vt + (u − F )vx + vvy +
√

Bu = −σy − Mhy,

σt + [(u − F )σ ]x + [vσ ]y = 0,

⎫⎪⎬
⎪⎭ (2.1)

where σ is the layer thickness, h =h(x, y) is the topography, and the total horizontal
velocity is u = (−F + u, v). The equations have been non-dimensionalized by taking
the horizontal length scale to be L, the horizontal velocity scale to be c ≡

√
g′H

(the long interfacial gravity wave speed in the absence of rotation), the time scale
to be L/c, and the layer thickness scale to be H . Three non-dimensional parameters
now appear explicitly in (2.1): the Froude number F = U/c; the non-dimensional
obstacle height M = hm/H ; and an inverse Burger number B = f 2L2/c2. Note that B

is the square of the ratio of the obstacle length scale L to the radius of deformation
LR = c/f . Results are presented in terms of F , M , and B , or similarity parameters
explicitly related to them, in all that follows.

As discussed in ERJ05, equations (2.1) apply also to an ‘experimental scenario’ in
which an obstacle is towed through a single layer of rotating fluid which is otherwise
at rest. However, because the single-layer rotating shallow-water equations are not
Galilean invariant, the set (2.1) does not apply directly to single-layer flow over an
obstacle. In single-layer flow, when rotation is present, the free surface must slope in
order to geostrophically ‘balance’ a steady current.

In order to model the physical situation of breaking waves, solutions of (2.1) are
typically regularized by including the possibility of mass and (lower-layer) momentum
conserving hydraulic jumps (Klemp, Rotunno & Skamarock 1997). The idea that
rotation should not significantly affect hydraulic jumps is due to Houghton (1969),
who argues that since a hydraulic jump may be considered to take place across
a very short distance compared to the Rossby radius of deformation (LR = c/f ),
rotation may be considered to have a negligible effect on its internal dynamics. In
two dimensions, therefore, hydraulic jumps satisfy those conditions applicable to the
non-rotating system, namely

−V [σ ]+− + [σ u · n]+− = 0,

−V [σ u · n]+− + [σ (u · n)2 + 1
2
σ 2]+− = 0,

}
(2.2)

where n is a horizontal unit vector normal to the jump, V is the jump velocity in
the direction of n, and [·]+− denotes the difference between the evaluated quantity in
brackets upstream and downstream of the jump. Note that in stipulating the jump
conditions (2.2), there is an implicit assumption that an unspecified dissipation acts
on the (unresolved) horizontal scale of the jumps (see e.g. Jiang & Smith 2000), and
therefore the full system does not conserve energy when jumps are present.

2.2. Two-dimensional obstacles

First, we present a novel summary of the theory for rotating flow over a two-
dimensional obstacle, or ridge, h = h(x). The two-dimensional (y-independent) version
of the problem formulated above has been addressed numerically by Baines & Leonard
(1989), and more recently by ERJ05. In ERJ05 the specific case of a parabolic obstacle
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of the form

h(x) =

{
4x(1 − x), 0 < x < 1,

0, x � 0, x � 1

is addressed in detail, as for this particular obstacle analytic progress is possible.
Seeking y-independent steady solutions of (2.1), the layer thickness σ is found to
satisfy (

σ +
F 2

2σ 2

)
xx

+ B (1 − σ ) = −Mhxx. (2.3)

For the particular case of the parabola, equation (2.3) may be integrated and various
deductions can be made about the form of the solution for given F , M and B ,
including the possible locations of steady hydraulic jumps, which, from (2.2), must
satisfy [

σ 2

2
+

F 2

σ

]+

−
= 0,

[
σx

(
1 − F 2

σ 3

)]+

−
= 0.

These results of ERJ05 are valuable for interpreting the results to be presented below
for rotating flow over isolated three-dimensional obstacles. In particular, we would
like to establish whether rotation has a robust, predictable effect on the flow patterns
in transcritical flows, that persists regardless of the geometry of the obstacle. To
make the comparison with the three-dimensional results below as straightforward as
possible, a new presentation of the ERJ05 results follows. Although these are valid
for all values of (M, F, B), a particularly compact and useful way of presenting the
results for small M is to find similarity parameters which entirely determine the flow
pattern in the limit M → 0. Writing

Γ =
F − 1

M1/2
, ν =

B1/2

M1/4
, (2.4)

and setting σ = 1 + M1/2φ reduces equation (2.3), at leading order in M , to(
−2Γ φ + 3

2
φ2

)
xx

− ν2φ = −hxx. (2.5)

Equation (2.5) describes the leading-order nonlinear behaviour of the steady flow
solutions of (2.3) in the weakly rotating transcritical limit M, B → 0, F → 1, in which
Γ , ν remain finite. For small M the problem is thus seen to be characterized by the
two similarity parameters (Γ , ν), and it is therefore useful to present the results of
the ERJ05 study in terms of these parameters, particularly as a similar approach is
taken for the three-dimensional obstacle analysis described below.

Figure 2 shows the regime boundaries dividing the different qualitative flow
behaviours found by ERJ05, presented as a function of the similarity parameters
(Γ , ν). The qualitative behaviours themselves are shown in the insets on the right
(note that DRJ is ‘downstream recovery jump’ and that the numbering and flow
direction has been changed from that in ERJ05, for consistency with the following
section). The curves labelled S1 and S2 on the supercritical side (Γ > 0) are derived
from the formulae (19) and (21) in ERJ05; in the weakly nonlinear (M → 0) case
these can be shown to reduce to

ν2 = 6

(
9 − 6Γ

2

Γ
3

)
, ν2 =

6

5

(
9 − 6Γ

2

Γ
3

)
,
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Figure 2. The different flow regimes for steady rotating flow over a two-dimensional
parabolic ridge derived from Esler et al. (2005). Results depend on the three parameters, M
(non-dimensional obstacle height), F (Froude number of upstream flow) and B (inverse Burger
number), and are presented here as a function of the similarity parameters Γ = (F − 1)M−1/2

and ν =B1/2M−1/4. In the weakly nonlinear limit M → 0 (a) the positions of the boundaries
between different flow regimes in (Γ , ν) parameter space become independent of M . (b) The
position of the regime boundaries at finite M =0.4. A number of flows show downstream
recovery jumps (DRJ).

respectively. The remaining curve on the supercritical side, dividing regions V and VI,
and the curves on the subcritical side (Γ < 0) are derived from numerical solution of
the appropriate systems of nonlinear equations outlined in ERJ05.

Figure 2(a) shows the regime diagram in the weakly nonlinear (M → 0) limit.
The ν = 0 axis corresponds to non-rotating flow which is characterized by transitions
between regimes I and IIb, and between regimes IV and VI, at Γ = ±

√
3/2 respectively,

(see e.g. Baines 1995). With increasing rotation the range of Γ for which transcritical
flows (regimes II–IV) occur is seen to decrease. New sub-regimes in which the
hydraulic jumps move onto the obstacle itself can now be identified in both subcritical
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(regime IIa) and supercritical (regime IVb) oncoming flow. For ν � 2, a further
possible regime appears for supercritical oncoming flow. In regime V, a hydraulic
jump is present downstream of the obstacle, notwithstanding the complete absence
of an upstream hydraulic jump.

To demonstrate that the weakly nonlinear description remains qualitatively useful
in practice even at finite M , figure 2(b) shows the (Γ , ν) regime diagram for M = 0.4.
In non-rotating flow (ν =0) some significant differences are apparent between the
M = 0.4 and weakly nonlinear situations, as expected from Baines (1995). First, in
subcritical oncoming flow, jumps may now appear on the downstream side of the
obstacle (regime IIa) in non-rotating flow. Second, a region of hysteresis (IV/VI)
for supercritical oncoming flow in which either a purely supercritical flow (VI) or
a transcritical flow with an upstream jump (IV) may develop, depending on the
flow initial conditions (see e.g. Baines & Davies 1980). One of the main results
of ERJ05 is that rotation acts to suppress supercritical hysteresis, as can be seen
in figure 2(b), since the region of hysteresis disappears for ν � 2.25. In fact for ν

greater than this value, the M = 0.4 regime diagram is very similar to its weakly
nonlinear counterpart (M → 0). In ERJ05 it was shown that hysteresis is present only
for B < 8M , i.e. ν < 81/2M1/4. At larger values of M , therefore, the hysteresis region
occupies a progressively larger proportion of the corresponding (Γ , ν) diagram.

The above results are specific to the parabolic obstacle. However, numerical
calculations (not shown) have been used to verify that flows over other obstacles
exhibit similar behaviour. Specifically, a qualitatively similar regime diagram was
derived for a ‘Witch of Agnesi’ obstacle with cross-section h(x) = 1/(1 + π2x2) (the
cross-sectional area of which is equal to that of the parabola above). Details of the
calculations are exactly as those described in ERJ05 for the parabolic obstacle. Hence
the general structure of the regime diagram figure 2 is likely to be generic to rotating
flows over most simple two-dimensional obstacles.

2.3. Three-dimensional obstacles

The above results will now be compared with those for flow over three-dimensional
isolated obstacles, again in the transcritical regime for small obstacle height M and
Froude number F close to one. The analysis loosely follows that in ERJ07, for the case
of non-rotating weakly dispersive flow, but the introduction of rotation breaks the
symmetry of the flow about the centreline y = 0, which requires careful consideration.
The relevant scaling regime for rotating transcritical flow over an obstacle with small
height M � 1 is suggested by ERJ07 and the derivation of the rotating Kadomtsev–
Petviashvili equation (Grimshaw & Melville 1989). The parameters

Γ = (F − 1)M−2/3, ν = B1/2M−1/3, (2.6)

remain of order unity as M → 0. Following ERJ07, Γ is referred to as the transcritical
similarity parameter and measures the supercriticality (F > 1, Γ > 0) or subcriticality
(F < 1, Γ < 0) of the flow for a given obstacle height M . The parameter ν measures
the importance of rotation in the transcritical regime. Both positive and negative
values of ν are admissible depending on the sense of the rotation.

It is useful to introduce a free-surface displacement

η = σ + Mh − 1,
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a small parameter ε = M2/3, and to seek solutions of (2.1) that evolve on a ‘slow’ time
scale τ = εt . The variables (u, v) and η can be expanded in powers of ε1/2 as

u = ε
(
u0 + ε1/2u1 + εu2 + · · · .

)
,

v = ε3/2(v0 + ε1/2v1 + εv2 + · · · .
)
,

η = ε
(
η0 + ε1/2η1 + εη2 + · · · .

)
.

⎫⎪⎬
⎪⎭ (2.7)

Expansions (2.7) are used to match leading-order asymptotic solutions of (2.1) in two
separate regions defined by their cross-stream distance from the centre of the obstacle
at y = 0.

In the inner region, which describes flow on streamlines that pass over or near the
obstacle, the cross-stream coordinate is taken to be y. Denoting inner-region variables
with the superscript i and inserting the expansion (2.7) in (2.1), establishes that

ui
0 = ηi

0(x). (2.8)

The leading-order solution is therefore described by an (as yet) undetermined y-
independent function ηi

0(x), except for the leading-order cross-stream velocity vi
0. At

the next order in the expansion

ui
1 = ηi

1(x, y), vi
0y = −hx. (2.9)

Integrating in y, the second condition gives

vi
0(x, y) = V (x) −

∫ y

0

hx(x, ŷ) dŷ, (2.10)

where V (x) is an undetermined function, with the velocity vi
0 related to the free-surface

height through

−vi
0x + νηi

0 = −ηi
1y. (2.11)

Higher orders in the inner expansion reveal that ηi
0(x) cannot be determined by the

inner region alone. Further, the expansion becomes invalid sufficiently far from the
obstacle, once |y| ∼ O(ε−1/2) where higher order terms in the series expansion become
comparable with those at leading order. Thus ηi

0 is determined by matching with an
outer-region solution which is valid for |y| ∼ O(ε−1/2).

The variable Y = ε1/2y is next introduced, in order to capture the cross-stream scale
on which the leading-order free-surface height and streamwise velocity vary in the
cross-stream direction, in the outer-region solution. The obstacle influences the outer
region only through the boundary condition at Y = 0. Throughout the rest of the
domain in the outer coordinates the bottom boundary is flat. In the outer region we
seek far-field asymptotic solutions, denoted by superscript o, of (2.1). Introducing a
‘slow’ time variable τ = εt , terms of the form

u0 = uo
0(x, Y, τ ) etc.

are substituted into the series expansion (2.7). At leading order

uo
0 = ηo

0(x, Y ), (2.12)

vo
0x = ηo

0Y + νηo
0. (2.13)

At the next order, uo
1, vo

1 , ηo
1 satisfy a set of equations identical to (2.12–2.13), and

hence may be set to zero without loss of generality.
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To obtain an equation for ηo
0 we must proceed to O(ε2), thereby introducing

nonlinear terms. The x-momentum and continuity equations give

uo
2x − ηo

2x = −νvo
0 + ηo

0τ − Γ ηo
0x + ηo

0η
o
0x,

uo
2x − ηo

2x = −v0
0Y − ηo

0τ + Γ ηo
0x − 2ηo

0η
o
0x.

}
(2.14)

Eliminating uo
2, ηo

2, and using relations (2.13) to eliminate terms involving vo
0 , gives(

2ηo
0τ + 3ηo

0η
o
0x − 2Γ ηo

0x

)
x

− ν2ηo
0 + ηo

0YY = 0. (2.15)

Equation (2.15) is the (dispersionless) rotating Kadomtsev–Petviashvili equation
(Kadomtsev & Petviashvili 1970; Grimshaw & Melville 1989).

The novel component here is the derivation of the appropriate boundary condition
on Y =0, which is obtained by matching with the inner solution as follows. Matching
between the inner and outer regions requires

ηi
0(x) = lim

Y→0
ηo

0(x, Y ),

lim
y→±∞

ηi
1y(x, y) = lim

Y→0±
ηo

0Y (x, Y ),

lim
y→±∞

vi
0(x, y) = lim

Y→0±
vo

0(x, Y ).

⎫⎪⎪⎬
⎪⎪⎭ (2.16)

These are satisfied if, from (2.10) and (2.11), the single condition

[
ηo

0Y

]+

− =

∫ ∞

−∞
hxx(x, ŷ) dŷ (2.17)

is enforced, where the square brackets denote the difference between evaluation at
Y → 0+ and Y → 0−. The centreline interface displacement ηi

0(x) and cross-stream
velocity V (x) in equations (2.10) are at this stage still unknown, and must be
determined from the solution itself a posteriori. The system involving equation (2.15)
and (2.17) is symmetric in ηo

0 about Y = 0, and if desired can be solved in the
half-plane, Y � 0. Crucially, however, (2.13) reveals that the leading-order transverse
velocity vo

0 is not antisymmetric about Y = 0, as it is in the non-rotating problem, and
the cross-stream velocity V (x) on the inner region centreline y = 0, determined by
(2.10), will in general be non-zero. Note that, whereas the leading-order displacement
ηo

0 is unchanged under a change in sign of the rotation, the leading-order transverse
velocity vo

0 is reflected about Y = 0. As recognized by Grimshaw & Melville (1989)
the implication of non-zero V (x) for y =0 is that, despite the superficial appearance
of reflectional symmetry in surface displacement height, solving (2.15) and (2.17) for
ηo

0 in the half-plane does not recover the solution for flow over a half-obstacle when
an infinite sidewall is present at y =0. The physical reason is that in the rotating
system, the presence of the wall introduces a new wave, the Kelvin wave. The half-
obstacle/sidewall problem will then have two distinct solutions depending on the sign
of the rotation.

In order to exploit the numerical methods of gasdynamics to find steady solutions
of (2.15), it is convenient to introduce

φ(x, Y ) =

∫ ∞

x

ηo
0(x̂, Y ) dx̂,

allowing (2.15) to be integrated to give the following system, valid in the half-plane:
Y � 0

(−2Γ − 3φx) φxx − ν2φ + φYY = 0, (2.18)
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subject to the boundary condition

φY (x, 0) = Kx(x) on Y = 0, where K(x) =

∫ ∞

0

h(x, ŷ) dŷ. (2.19)

With ν = 0, this system is the transonic small-disturbance equation, or Kármán–
Guderley equation, for flow over a thin symmetric aerofoil with half-thickness εK(x).
The aerofoil shape K(x) is the (half) cross-sectional area of the obstacle. For rotating
flow with ν 
= 0, equation (2.18) is described here as the rotating transcritical small-
disturbance (rTSD) equation.

For definiteness attention will be restricted in the following to two specific
axisymmetric obstacles, with non-dimensional radial height profiles given by

h(r) =

{
1 − r2, r < 1,

0, r � 1,
paraboloid (PB), (2.20)

h(r) =
1

(1 + 4r2)3/2
, ‘Witch of Agnesi’ (WA).

These two obstacles represent relative extremes of behaviour, that of ‘compact’ and
‘non-compact’ obstacles respectively, found in the non-rotating study of ERJ07. The
second of the two obstacles has also been studied in detail in the non-rotating
context by several authors (see Schär & Smith 1993a; Jiang & Smith 2000).
Note that both obstacles have maximum height unity, for consistency with the
non-dimensionalization, and have equal volume V = π/2. Hence differences in flow
behaviour can be attributed purely to differences in obstacle shape. The equivalent
aerofoils for the two obstacles, illustrated in ERJ07 (see their figure 1), are

K(x) =

{ 2
3
(1 − x2)3/2, |x| < 1,

0, |x| � 1,
paraboloid (PB), (2.21)

K(x) =
1

2(1 + 4x2)
, ‘Witch of Agnesi’ (WA).

3. Transcritical rotating flows over three-dimensional obstacles in the
small-disturbance limit

The transcritical asymptotic theory presented above for three-dimensional obstacles
reduces the three-parameter (M , F , B) problem for flow over an obstacle of finite
height to a two-parameter problem (Γ , ν) that is formally valid for small obstacles,
M � 1. The parameter reduction allows the numerical construction of a regime
diagram describing the qualitative behaviour of transcritical rotating flow over a
three-dimensional obstacle, to compare with the two-dimensional obstacle regime
diagram figure 2(a). As in the two-dimensional obstacle case, it can be expected
that the regime diagram will be a reasonably accurate guide to behaviour even at
finite values of M . In fact since there is no known hysteresis behaviour for flow over
simple axisymmetric three-dimensional obstacles (e.g. Baines 1995) the M → 0 regime
diagram may remain accurate for relatively high values of M , as is shown in § 4 below.

3.1. Numerical solution of the rTSD

The rTSD equation (2.18), with the ‘equivalent aerofoil’ boundary condition (2.19)
can be solved by making relatively minor modifications to existing algorithms for
the non-rotating TSD equation developed in the study of flow over aerofoils in
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gas dynamics (e.g. Cole & Cook 1986). The type-dependent finite-difference scheme
used to obtain the solutions below was developed by Murman & Cole (1971) and
refined by Engquist & Osher (1980). The basic concept behind the technique is
that a different finite-difference stencil is used depending on whether the flow is
locally subcritical and equation (2.18) is therefore locally elliptic (centred differences),
is locally supercritical/hyperbolic (upstream sided differences), or is in transition
between the two at a shock (hydraulic jump) or sonic line. The resulting difference
equations are solved using the monotonic implicit approximate-factorization scheme
of Goorjian & Van Buskirk (1981), with the low-frequency modes damped by means
of the multi-grid acceleration technique described by Jameson (1979). The inclusion of
the extra rotating term in (2.18) is straightforward, and is found to have the effect of
further stabilizing the behaviour of all algorithms tested. For supercritical oncoming
flow, the boundary conditions are φx =0 at the upstream boundary, with outflow
conditions on the upper and downstream boundaries. For subcritical oncoming flow,
in the absence of rotation, φ may be specified on the lateral boundaries using the
anticipated asymptotic form of the far-field solution to the TSD (e.g. Cole & Cook
1986). In rotating flow, the far-field solution decays exponentially with distance from
the aerofoil, hence it is sufficient to set φ = 0 on (suitably distant) lateral boundaries.

As discussed in detail in ERJ07, there are difficulties in obtaining numerical
solutions of (2.18) in a finite domain as |Γ | → 0. In the non-rotating case the domain
size needs to be extended indefinitely as this limit is approached, in order to prevent
the upstream hydraulic jump from reaching the upstream boundary of the domain,
as well as to prevent wave reflection from the lateral domain boundaries. Rotation
alleviates these problems to an extent, although solutions with |Γ | sufficiently close to
zero remain problematic. Solutions are therefore obtained on a range of domain sizes,
depending on the values of Γ and ν, from 10L × 10ε−1/2L to 40L × 40ε−1/2L. Grid
spacings vary between δx = 0.05L (low resolution) and δx =0.01L (high resolution).
For all of the numerical calculations, care was taken on a case-by-case basis to ensure
that the flow patterns and calculated drags are unaffected by further increases in
domain size, that the flow field in the vicinity of the obstacle is steady, and that
adequate convergence with respect to spatial resolution has occurred.

3.2. Transcritical flows in the rTSD limit

Figure 3 shows numerical solutions of the rTSD (2.18) for the paraboloid (PB)
equivalent aerofoil boundary conditions (2.19), with K(x) given by equation (2.21),
at different values of the similarity parameters Γ (criticality) and ν (rotation). Recall
that the equivalent aerofoil boundary conditions (2.19) represent the effect of the
corresponding three-dimensional obstacle (2.20) on the flow in the rTSD limit, and
hence in this limit the forcing from the obstacle is compressed onto the line Y =0.
The quantity contoured is the leading-order surface displacement field ηo

0(x, Y ) ( = φx),
and shaded regions are regions of embedded supercritical flow (when the oncoming
flow is subcritical, Γ < 0) or embedded subcritical flow (when the oncoming flow is
supercritical, Γ > 0). Note that the rTSD solutions for ηo

0(x, Y ) are symmetric about
the centreline (Y = 0). Shallow-water flows at finite M are asymmetric about the
centreline, but as will be seen below this asymmetry enters the asymptotic theory at
higher order. The different panels in figure 3 illustrate typical flow patterns in the
qualitatively different flow regimes found as Γ and ν are varied: these flow patterns
are described in more detail below.

Figure 4(a) gives the regime diagram for the rTSD equation in (Γ, ν) parameter
space for the paraboloid obstacle. The regime boundaries are established numerically
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Figure 3. Steady-state height fields illustrating various regimes in the rTSD equation (2.18)
discussed in the text. Results are for the paraboloid obstacle, and are derived from numerical
solutions of the rTSD equation, with spatial resolution δx = δy =0.01L. Contour intervals are
0.1εH in each panel (ε = M2/3). Values of Γ , ν are given in the top right of each panel; roman
numerals in the bottom right corner of each panel indicate to which region of the regime
diagram (figure 2) each solution belongs, the exact location of each solution being indicated
in figure 4 by a triangle. Regions of subcritical flow are shaded, except for the top right panel
where the shaded region indicates supercritical flow.
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Figure 4. Transcritical similarity parameter and rotation similarity parameter (Γ, ν) regime
diagrams for steady solutions to the rTSD equation (2.18) corresponding to flow over the
paraboloid (a) and ‘Witch of Agnesi’ (b) obstacles. Triangles denote the location of the
example flows in figure 3. The grey ellipse gives the approximate position of the experiment
described in connection with figure 1. The regimes for the paraboloid are as follows:
(I) Subcritical flow everywhere. (IIa) Subcritical oncoming flow with a single embedded region
of supercritical flow extending behind the obstacle. (IIb) Subcritical oncoming flow with a
single embedded region of supercritical flow on the obstacle. (III) Supercritical oncoming
flow with a single embedded region of subcritical flow enclosing the leading edge of the
obstacle. (IVa) Supercritical oncoming flow with three embedded regions of subcritical flow.
(IVb) Supercritical oncoming flow with two regions of subcritical flow, the rear of which lies
behind the trailing edge of the obstacle. (IVc) Supercritical oncoming flow with two regions of
subcritical flow, the rear of which encloses the trailing edge of the obstacle. (Va) Supercritical
oncoming flow with two embedded regions of subcritical flow both behind the trailing edge of
the obstacle. (Vb) Supercritical oncoming flow with a single region of subcritical flow behind
the trailing edge of the obstacle. (Vc) Supercritical oncoming flow with a single region of
subcritical flow enclosing the trailing edge of the obstacle. (VI) Supercritical flow everywhere.
Regimes for the ‘Witch of Agnesi’ obstacle (b) are as for the paraboloid, except that the
distinction between ‘on’ and ‘off’ the obstacle can no longer be made since the ‘Witch of
Agnesi’ obstacle is not compact.
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by repeatedly finding steady solutions to the rTSD equation (2.18). The regime
diagram is to be examined in conjunction with figure 3, where the corresponding flow
patterns are illustrated (note that each inset in figure 3 is labelled with the number
of the appropriate regime). The exact locations in parameter space of the figure 3
example solutions are marked in figure 4 as triangles.

In regime I the flow is entirely subcritical throughout the domain. The solution is
symmetric in x and rotation is found to cause the solution to decay more rapidly away
from the obstacle, causing the lateral extent of the disturbance field to be reduced
relative to its non-rotating counterpart. In regime II a region of supercritical flow
appears near the rear of the obstacle. Fluid is accelerated smoothly from subcritical
to supercritical past the obstacle (shaded region), before abruptly decelerating to
subcritical via a hydraulic jump. In the regime diagram figure 4(a), with increasing
rotation the boundary between regimes I and II moves closer to Γ =0, reducing the
region of parameter space where transcritical solutions exist. Region II can be further
subdivided into IIa and IIb depending on whether the embedded supercritical flow
remains attached to the obstacle (IIa) or is detached (IIb, not shown). The detached
(IIb) solution shows the characteristic ‘fishtail’ system of jumps behind the obstacle
trailing edge characteristic of compressible gas flow over an aerofoil (see e.g. Chapman
2000). In regime IIa the effect of rotation is sufficiently strong that the embedded
region of supercritical flow lies entirely over the obstacle, and the ‘fishtail’ system of
jumps is destroyed.

For supercritical oncoming flow throughout region III, the displacement field differs
little from the corresponding non-rotating flows. The flow contains a single embedded
region of subcritical flow, enclosing the leading edge of the obstacle, with a hydraulic
jump at its upstream boundary beyond which the flow is undisturbed. Downstream
of the obstacle the flow returns to its undisturbed state through a supercritical
leap; supercritical leaps being distinguishable from hydraulic jumps in that they
connect two regions of supercritical flow, as opposed to allowing a transition between
supercritical flow and subcritical flow. In region IV, by contrast, the flow field no
longer qualitatively resembles that found in non-rotating flow. An embedded region
of subcritical flow enclosing the leading edge of the obstacle remains, but additional
embedded regions of subcritical flow appear to the rear of the obstacle. The nature of
these further regions of embedded subcritical flow allows region IV to be subdivided
into IVa, IVb and IVc. In IVa two embedded regions of subcritical flow are found
downstream of the obstacle on either side of the centreline Y = 0, seen in the shaded
regions in the IVa panel of figure 3, to the rear of the obstacle. Note that as Γ is
decreased to cross the regime boundary between regions III and IVa, these embedded
subcritical regions are not found to migrate inwards from infinity, rather they first
appear at a finite distance from the obstacle. At the regime boundary between IVa
and IVb, the two embedded subcritical regions downstream join at Y = 0 to form a
single region, and a broad hydraulic jump is now present to the rear of the obstacle.
In the IVb panel of figure 3, this broad hydraulic jump forms the rear of a ‘fishtail’
system of jumps, the first of which are supercritical leaps, initiated at the obstacle
trailing edge. If ν is increased towards the boundary between regions IVb and IVc
in the regime diagram, the fishtail system of jumps occupies a progressively smaller
area, until the rear jump becomes attached to the rear of the obstacle in region IVc.
Region IVc is therefore characterized as having hydraulic jumps attached to both
edges of the obstacle, as can be seen in the IVc panel of figure 3.

With increasing Γ , or more supercritical oncoming flow, the strength and lateral
extent of the hydraulic jump at the upstream edge of the obstacle decrease. If rotation
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is sufficiently strong (ν � 2.5), the upstream jump disappears altogether, defining the
boundary with region V of parameter space. In region V there is no upstream jump,
but a jump remains at the downstream edge of the obstacle. Region V solutions
therefore no longer have a region of embedded subcritical flow enclosing the leading
edge of the obstacle, although embedded regions of subcritical flow remain at the
obstacle rear. The nature of these subcritical regions can be used to subdivide region V
in a similar fashion to region IV, and figure 3 shows a typical flow from region Vb. If
Γ increases further, the flow eventually becomes supercritical everywhere in region VI
of parameter space. Region VI flows are characterized by supercritical leaps lying
approximately along the ‘Mach lines’ emanating from the leading and trailing edges
of the obstacle.

Figure 4(b) shows the equivalent regime diagram for the ‘Witch of Agnesi’ (WA)
obstacle. Flow regimes are labelled as for the paraboloid obstacle. For the ‘Witch of
Agnesi’ obstacle, no distinction can be made between regions of embedded subcritical
or supercritical flow lying on or off the obstacle, as the obstacle has no definite
boundary, so there are fewer regime subdivisions. Nevertheless the regime diagram
has the same main qualitative features as for the paraboloid obstacle. Perhaps the
most notable difference between the two is that at relatively high rotation rates
(ν � 2), the transition from regime IV solutions, which have jumps both ahead of and
behind the obstacle, to regime V solutions, in which only the rear jump is present,
occurs at much lower values of Γ for the ‘Witch of Agnesi’ obstacle. Further, the
change in character of the supercritical transition noted above occurs for ν ∼ 1.7,
significantly lower than for the paraboloid obstacle. Thus it appears that although
solutions for the paraboloid and ‘Witch of Agnesi’ obstacles are qualitatively similar,
the effects of rotation are felt somewhat more strongly by the ‘Witch of Agnesi‘
obstacle than the paraboloid.

One of the most important aspects of the problem under investigation is to
determine the effect of rotation on the drag exerted by the obstacle on the flow
in the transcritical regime. As shown in ERJ07, drag in the rTSD limit is given by
the drag on the ‘equivalent aerofoil’ in the rTSD solution. In terms of the model
parameters, and the displacement height field, the drag is given by

D = M5/3

∫ ∞

−∞
ηo

0(x, 0)Kx(x) dx = M5/3D(Γ, ν),

where the function D(Γ, ν) must be determined numerically. Figure 5 shows the drag
function D(Γ, ν) for fixed values of ν calculated from a series of steady numerical
solutions of equation (2.18), for the paraboloid obstacle. In the non-rotating case
(ν = 0) the drag curve rises steeply on the subcritical side, plateaus at a fixed value,
and then decays more gradually on the supercritical side. Very similar drag curves
were found for four other obstacles in ERJ07. It is clear from figure 5 that rotation
has a strong and systematic effect on the drag exerted by the obstacle on the flow:
as ν increases, the range of Γ for which significant drag is exerted is reduced at the
subcritical end. For ν � 2 significant drag is exerted only for significantly supercritical
oncoming flows (Γ > 1) and as rotation increases further the peak drag begins to
decrease. At all values of ν investigated, the drag is found to approximate its non-
rotating value for sufficiently high Γ . Dots on each curve in figure 5 indicate the
location of the regime boundaries of figure 4, and in some cases these correspond to
points of inflection on the corresponding drag curve.
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Figure 5. The drag function D(Γ, ν) as a function of the transcritical similarity parameter
Γ for various fixed values of the rotation similarity parameter ν, calculated from a series
of steady numerical solutions of the rTSD equation (2.18) for the paraboloid (PB) obstacle
forcing given by (2.21). The dots on each curve give the value of Γ at the supercritical limit of
the transcritical regime. For larger values of Γ the drag is well-approximated by linear theory.

4. Transcritical rotating flows over finite-height three-dimensional obstacles
The question naturally arises of to what extent solutions to the rTSD equation

represent those of the full rotating shallow-water equations. In ERJ07, the non-
rotating theory was found to be reasonably accurate for M � 0.4 and |Γ | � 1. Can
each flow regime discovered in the rTSD solutions above be identified at finite obstacle
height M in solutions of the rotating shallow-water equations, especially once some
of the assumptions underpinning the asymptotic theory hold weakly at best? Are
drag and regime boundary predictions still reasonable? These questions are addressed
next.

4.1. Numerical solution of the rotating shallow-water equations

The rotating shallow-water equations (rSWE) are solved numerically using the
CLAWPACK finite volume code (Conservation LAWs software PACKage, LeVeque
2002). CLAWPACK solves hyperbolic systems of equations, usually written in
conservation form, using an algorithm due to Roe (1981) in which the global problem
under investigation is first discretized into a set of local Riemann problems by
assuming a piecewise discontinuous form for the solution. The set of Riemann
problems is linearized following Roe’s algorithm and solved using Godunov’s upwind
method (LeVeque 2002). The great advantage of this algorithm is that, provided the
governing equations can be written in conservation form, the speed of propagation of
shock discontinuities satisfying the global conservation laws is accurately captured.
Here CLAWPACK is adapted to solve the shallow-water equations (2.1) written in
conservation form, and the relevant shock discontinuities are the hydraulic jumps
(2.2). The forcing terms due to the obstacle and rotation cannot be included in
the conservation form of (2.1), and are handled using Strang splitting, where the
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time tendency at each step is split into a contribution from the unforced equations
calculated using Roe’s method, and a separately computed contribution from the
forcing, evaluated using standard semi-implicit finite-difference methods. Rotation
terms have previously been included following this technique by Kuo & Polvani
(1997), and one-dimensional solutions using this algorithm have been validated
against analytical solutions in ERJ05. Recent advances in finite-volume numerical
schemes (Audusse et al. 2004; Bouchut, Le Sommer & Zeitlin 2004) allow rotation
to be incorporated into the equations with greater formal accuracy than the present
method; nevertheless the resolution required to obtain high accuracy in the present
calculations is not a limitation.

Very similar domain size problems occur for the rSWE integrations in the limit
F → 1 as those described above for the rTSD integrations in the limit Γ → 0.
Progressively larger domain sizes are required as the limit is approached in each
case. Solutions are therefore obtained on domains ranging in size from 10L × 10L to
50L × 50L, with grid-spacing ranging from δx = 0.05L (low resolution) to δx = 0.01L

(high resolution). The model is integrated forwards in time with an adjustable time
step based on the Courant–Friedrichs–Lewy criterion (for details see, LeVeque 2002)
until the flow in a pre-determined region around the obstacle converges to satisfy a
steady-state numerical criterion.

4.2. Transcritical flows in rotating shallow water

Figure 6 shows steady height fields η = σ − 1 + Mh obtained from numerical
integrations of the rotating shallow-water equations (2.1). The parameters (M, F, B)
for each panel are M = 0.4 with F and B then chosen to set Γ and ν equal to their
values in the corresponding panel in figure 3 (see also triangles in figure 4). Contour
intervals have been scaled by ε for consistency with the transcritical asymptotic theory
results of figure 3. Note also that to facilitate direct comparison with figure 6, the
aspect ratio in figure 3 has been selected to correspond to an obstacle height M = 0.4,
i.e. a distance unit in the Y -direction is ε−1/2 = M−1/3 ≈ 1.357 times longer than a
distance unit in the x-direction.

Comparison of figures 3 and 6 reveals that each of the different regimes identified
for the rTSD solutions can be seen to persist at finite obstacle height M = 0.4. Further,
each flow regime has been identified within the expected region of parameter space in
the regime diagram constructed for the rTSD equation (figure 4). In most cases the
rTSD solutions in figure 3 capture both quantitatively and qualitatively the important
details of the rSWE wake shown in figure 6, at least away from the obstacle itself. One
exception is the case of purely subcritical flow (regime I, top left panel of figure 6), for
which the solution to the full rotating shallow-water equations is somewhat different
to the corresponding rTSD solution. This disagreement arises because the disturbance
to the free-surface elevation in the regime I shallow-water solution is largely confined
over the obstacle, whereas the rTSD solutions are formally valid only for the far field.
A further notable difference is that in regime IVa an embedded region of subcritical
flow to the rear of the obstacle (shaded) exists only for y < 0.

The most obvious departure from the asymptotic solutions is the rather weak
asymmetry of the displacement height fields about y =0 seen in figure 6. The
asymmetry enters at higher order in the asymptotic theory for the displacement
height field. The asymmetry in the cross-stream velocity v, however, is captured at
leading order by the rTSD, as is noted below. A further process of interest that is
relegated to higher order in the rTSD approximation is that of vorticity generation
by the shock itself (see e.g. Schär & Smith 1993b). Analysis of the figure 6 rSWE
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Figure 6. Steady-state height fields for rotating shallow-water flow over the paraboloid
obstacle with non-dimensional height M = 0.4. Results are derived from numerical solutions of
the rotating shallow water equations, with spatial resolution δx = δy = 0.01L. Contour intervals
are 0.1εH in each panel, except for the top left panel in which the contour interval is 0.01εH .
Values of F , B are given in the top right of each panel and correspond to the values of Γ ,ν in
figure 3. Roman numerals in the bottom right corner of each panel indicate the region of the
regime diagram (figure 4) to which each solution belongs, the exact location of each solution
being indicated in figure 4 by a triangle. Regions of subcritical flow are shaded, except for the
top right panel where the shaded region indicates supercritical flow.
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an enlargement of part of (c). Triangles and squares mark the results of rotating shallow-water
model results for M = 0.05 and 0.4 respectively. The solid lines show the transcritical similarity
theory predictions for the drag in each case, as derived from the rTSD numerical results (see
also figure 5), with the Froude number corresponding to the supercritical transition marked
as a solid circle. The dashed curve shows the drag calculated for linear supercritical flow.

solutions reveals that this is most significant for the regime II solution, contributing
to the observed asymmetry about y = 0, which is more pronounced than that in the
other regimes.

Figure 7 shows the drag D exerted by the paraboloid obstacle on the flow, calculated
from the rSWE solutions, against the Froude number F of the oncoming flow.
Results are given for two different obstacle heights (M =0.05 and M = 0.4), and are
compared for constant values of the similarity parameter ν, i.e. not for the same
value of the rotation parameter (inverse Burger number) B , but for the same value of
BM−2/3 ( = ν2) in order to test the rTSD theory. The drag D is scaled by M2 to allow
comparison between rSWE solutions at different values of M and linear predictions
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(dashed curves). The dashed curves are obtained from an exact linear theory of drag
for which D ∝ M2. The linear theory, which has been derived analytically, has been
confirmed by comparison with the numerical model in the appropriate parameter
regime; the details will be discussed elsewhere. The rTSD predictions (solid curves)
are also shown in figure 7 for the obstacle heights M =0.05 and M = 0.4. Note that
the appropriate rTSD curve of figure 5 must be re-plotted for each value of M because
the rTSD theory predicts that drag is proportional to M5/3 in the rTSD limit (not
M2). The solid rTSD curves are plotted only for a finite range of Γ that encompasses
the region where the rTSD theory might be expected to apply, corresponding to a
finite range in F that increases as M2/3. The transition to purely supercritical flow in
the rTSD solutions is marked by a solid circle on each curve.

Figure 7(a) shows non-rotating results (ν =0, see also ERJ07), figure 7(b) results
for rotation rates corresponding to ν = 2 and figure 7(c, d) results for ν = 5. Note
that panel (d) repeats the results for ν = 5, but zooming in on the dotted rectangle
from panel (c), to illustrate the behaviour close to F = 1 for the M = 0.4 solutions. In
each panel, the rSWE drags are plotted as triangles (M = 0.05) and squares (M = 0.4).
The rSWE drag curves follow the solid rTSD drag curves close to F = 1 before joining
the dashed linear drag curves at higher values of F . As expected, the M =0.05 results
adhere more closely to the rTSD asymptotic predictions than the M = 0.4 results. At
higher values of ν, linear theory is accurate for a greater range of Froude numbers
F , whilst the range of F for which the rTSD accurately predicts the rSWE drag is
decreased. The results for the case with M = 0.05 and ν = 5 in fact show that linear
theory accurately describes the drag at all values of F , and the rTSD and linear drags
almost coincide for F ∈ [1, 1.2]. For M = 0.4 and ν = 5 (figure 7d), by contrast, the
rTSD theory predicts the drag much better within the range F ∈ [1, 1.5], with linear
theory being more accurate for F > 1.5. To summarize, a useful rule to estimate drag
over a finite obstacle up to M = 0.4, for all values of F and all rotation rates, is simply
to take the minimum of the rTSD drag prediction D(Γ, ν)M5/3 and the calculated
linear drag.

To examine in more detail the breakdown of the weakly nonlinear rTSD theory as
a function of M , the location in obstacle height–Froude number (M, F ) parameter
space of the transitions from purely subcritical/supercritical flow to transcritical
flow has been calculated from the rTSD results for both non-rotating flow (ν = 0)
and rotating flow (ν = 2). Figure 8 shows the calculated regime diagrams for the
paraboloid obstacle. The region of parameter space labelled SPC corresponds to
entirely supercritical flows, the entirely subcritical flow regime is labelled SBC and the
transcritical flow regime TC. The locations in (M, F ) space where transition occurs
in the numerical calculations are labelled with stars. The predictions from the rTSD
equation, which are expected to be accurate for small M , are plotted as solid curves.
The rTSD theory can be seen in figure 8 to predict these transitions accurately at finite
M , particularly for rotating flows. The dotted curves show the corresponding results,
valid for all M but particular to a paraboloic obstacle, for the case of one-dimensional
flow over a ridge discussed in § 2.2.

As noted in § 2, one feature of the rTSD asymptotic theory is that, although the
free-surface displacement η and streamwise velocity u fields are symmetric in Y at
leading-order, the leading-order cross-stream velocity v is not antisymmetric about
Y = 0 (as it would be in non-rotating flow). Figure 9 compares the leading-order v

obtained from an rTSD solution (using equation (2.13), figure 9a, b) with that from
the corresponding rSWE solution for the M = 0.4 obstacle (figure 9c, d). Note that
contour intervals and the Y -scale for the rTSD solution have been chosen to allow



102 J. G. Esler, O. J. Rump and E. R. Johnson

0.1 0.2 0.3 0.4 0.5
 Obstacle height, M

0

0.5

1.0

1.5

2.0

(a) (b)

 F
ro

ud
e 

nu
m

be
r,

 F

SBC

TC

SPC

SBC

TC

SPC

0.1 0.2 0.3 0.4 0.5
 Obstacle height, M

0

0.5

1.0

1.5

2.0

Figure 8. The flow regimes (SBC: subcritical, TC: transcritical, SPC: supercritical), in obstacle
height–Froude number (M ,F ) parameter space, for flow over the paraboloid obstacle with
(a) ν = 0 (non-rotating) and (b) ν = 2 (rotating). The solid lines show the predictions for the
supercritical and subcritical transitions calculated from the rTSD solutions (F = 1 + Γ+M2/3,
F = 1 − Γ−M2/3, for numerically determined constants Γ+, Γ−). The dotted curves show
the corresponding results for a two-dimensional obstacle, valid for all M . The non-rotating
two-dimensional obstacle curves are valid for any obstacle shape and are given by e.g. Baines
(1995). The rotating two-dimensional obstacle curves are particular to a parabolic obstacle,
and are discussed in Esler et al. (2005). Note that there are two curves on the supercritical side,
as in the two-dimensional obstacle case a region of hysteresis exists in both non-rotating and
rotating flow (e.g. Baines 1995). The stars show the location of the actual transitions found
in each case from a sequence of steady numerical solutions of the rotating shallow-water
equations (2.1).

direct comparison with an M =0.4 rSWE solution. The surface displacement fields
for the same flows can be compared in the ‘regime IVb’ panels of figures 3 and 6
respectively. The results show that the rTSD asymptotic theory captures the main
asymmetric structure of the v field away from the obstacle in the full rSWE solution.
Figures 9(b) and 9(d) show cross-sections of the transverse velocity v along y = 1
(solid line) and y = −1 (dashed line) for the rTSD and rSWE respectively. Results
have again been scaled for consistency with the transcritical asymptotic theory, and
show that the changes in v at the hydraulic jumps have again been captured by
the rTSD theory, although the rear jumps are somewhat smaller in amplitude in the
rSWE case, owing to the proximity of the obstacle.

5. Conclusions
One-and-a-half layer rotating flow over topography is, in the shallow-water or

small-aspect-ratio limit, fully described by three parameters: M (non-dimensional
obstacle height), F (upstream Froude number) and B (inverse Burger number). The
results presented here reveal that in the transcritical regime (F ∼ 1), for sufficiently
small M , a parameter reduction is possible that allows the flow to be described by
just two ‘similarity parameters’ that measure the relative importance of criticality and
rotation relative to topographic forcing. In transcritical flow the effective topographic
forcing varies with M1/2 in flow over a two-dimensional obstacle and with M2/3 for flow
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Figure 9. (a) Contour plot of the leading-order tranverse velocity field vo
0(x, Y ) obtained

from the rTSD solution for flow over the paraboloid (PB) obstacle with Γ = 0.7 and ν = 2.
The contour interval is 0.1ε3/2c (note that ε3/2 = M = 0.4 allows comparison with the results
in (c)). (b) Cross-sections of vo

0(x, Y ) at Y =0.41/3 = 0.7368 (solid curve) and Y = −0.7368
(dashed curve). (These values of Y are chosen to correspond to the edge of an obstacle of
unit radius when M = 0.4 as in (d), and the v-axis is also scaled by ε3/2 = M = 0.4). (c) As for
(a) but for v(x, y), the solution of the rotating shallow-water equations for the PB obstacle
with M = 0.4, F = 1.3800, B = 2.1715 (giving Γ = 0.7 and ν = 2), with contour interval 0.04c.
(d) Cross-sections of v(x, y) at y =1 (solid curve) and y = −1 (dashed curve) for the same
parameters as (c).

over a three-dimensional obstacle, and the relevant similarity parameters are therefore
found to be {Γ = (F −1)M−1/2, ν = B1/2M−1/4} and {Γ = (F −1)M−2/3, ν =B1/2M−1/3}
respectively.

Regime diagrams describing the qualitative flow behaviour as a function of the
similarity parameters have been constructed for both two- and three-dimensional
obstacles (figures 2 and 4). These reveal that rotation has remarkably similar effects
despite the very different flow geometries. For example, rotation is found to have
a robust tendency to generate and/or amplify hydraulic jumps found downstream
of the obstacle. The physical reason for the existence of these downstream jumps
in rotating flow relates to the fact that a ‘limiting amplitude’ exists for inertia–
gravity waves generated downstream of the obstacle (Shrira 1986; Grimshaw et al.
1998). If the topographic forcing exceeds that required to generate a wavetrain of
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limiting amplitude, then a hydraulic ‘recovery’ jump appears downstream within a
single wavelength of the obstacle, and following the recovery jump are waves at or
below the limiting amplitude. Additionally, rotation acts to decrease the amplitude
of upstream hydraulic jumps, and for flow over a three-dimensional obstacle also
their lateral extent. For ν � 2 (two-dimensional obstacles) or ν � 2 (three-dimensional
obstacles) the nature of the supercritical transition is found to change qualitatively,
with hydraulic jumps first appearing to the rear of the obstacle as the Froude
number is reduced, rather than appearing upstream as in non-rotating flow. For
both the two- and three-dimensional obstacles the presence of rotation also reduces
the range of subcritical flows for which hydraulic jumps are found. However, one
important qualitative difference between the two- and three-dimensional obstacle cases
remains the presence of supercritical hysteresis, which occurs in non-rotating flow over
two-dimensional obstacles (e.g. Baines & Davies 1980) as well as at low rotation rates
(e.g. ERJ05), but has not been discovered to occur for flow over axisymmetric three-
dimensional obstacles (e.g. ERJ07). Note that supercritical hysteresis does not exist
in the weakly nonlinear limit (M → 0) and hence is not captured by the reduction to
the similarity parameters. This is a limitation of the similarity theory, albeit one that
applies only to the two-dimensional obstacle flows.

Drag predictions from the rTSD theory, together with a theory for linear
supercritical drag, combine to offer a reasonably complete description of the drag in
the three-dimensional obstacle problem. A useful rule is found to be that the drag
on a finite obstacle is given to a reasonable approximation by the minimum of the
rTSD and linear predictions. In the transcritical regime rotation reduces the range
of Froude numbers for which drag is large. When rotation is strong, non-zero drag
occurs only for significantly supercritical oncoming flows. These results may provide
useful insight for the design of orographic gravity wave drag schemes for numerical
weather prediction and climate models.

In the towing tank experiments of figure 1, rotation was also observed to attenuate
the amplitude and lateral extent of the upstream nonlinear ‘bow’ wave and to generate
a nonlinear wave downstream of the obstacle, just as in the rSWE results above.
However, dispersive effects are clearly important in the towing tank experiments,
not least because the observed disturbances resemble solitary waves rather than
hydraulic jumps. Dispersion can be straightforwardly incorporated into the asymptotic
transcritical theory given here, following ERJ07. If the dispersive effects enter as for
a single layer of fluid, equation (2.15) becomes(

2ηo
0τ + 3ηo

0η
o
0x − 2Γ ηo

0x +
∆2

3
ηo

0xxx

)
x

− ν2ηo
0 + ηo

0YY = 0, (5.1)

with the ‘equivalent aerofoil’ boundary condition (2.17) unchanged. Here the
dispersion parameter ∆ = δM−1/3, where δ = H/L is the relevant aspect ratio (layer
depth divided by horizontal obstacle scale). Comparison of solutions of (5.1) and
shallow-water results in the non-rotating case, given in ERJ07, reveal that solitary
waves often replace hydraulic jumps at exactly the same location. Perhaps it is
unsurprising that in the towing tank experiments and in the current numerical
investigation, rotation is thus seen to affect non-dispersive and dispersive flows in
similar ways. Further numerical exploration of the behaviour of (5.1) is described
elsewhere (Vilenski & Johnson 2004), and steady solutions of a variant of (5.1) with
dispersion of Benjamin–Davis–Acrivos type, appropriate for a one-and-a-half layer
fluid (Benjamin 1967; Davis & Acrivos 1967), are presented in Johnson et al. (2006).
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Transcritical rotating flow patterns may be observable in a wider range of
geophysical scenarios than those detailed above. A detailed understanding of the
transcritical regime may therefore be necessary in order to accurately parameterize
mountain drag in some climatological situations. Future rotating tank experiments
will be of interest to determine how readily different steady flow regimes establish
themselves, and to investigate the transitions between them.

E. R. J. and O. J. R. acknowledge funding from the UK Natural Environmental
Research Council through grant no. NER/A/S/2000/01323 and research studentship
NER/S/A/2003/11387.
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